2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Second Semester B.E. Degree Examination, Aug./Sept.2020 **Engineering Mathematics - II**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Solve:
$$\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 8y = 0$$
 (06 Marks)

b. Solve:
$$y'' - 4y' + 13y = \cos 2x$$
 (07 Marks)
c. Solve by the method of undetermined coefficients of the equation

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^x$$
 (07 Marks)

2 a. Solve:
$$\frac{d^2y}{dx^2} - 4y = \cosh(2x - 1)$$
 (06 Marks)

b. Solve:
$$y'' + 3y' + 2y = 12x^2$$
 (07 Marks)

Solve by the method of variation of parameters: y" (07 Marks)

3 a. Solve:
$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = (1+x)$$
 (06 Marks)

b. Solve:
$$\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$$
 (07 Marks)

Obtain the general solution and the singular solution of the equation $x^4p^2 + 2x^3py - 4 = 0$ (07 Marks)

4 a. Solve:
$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = \sin 2[\log(x+1)]$$
 (06 Marks)

b. Solve:
$$p^2 + 2py Cotx = y^2$$
 (07 Marks)

Solve the equation (px - y) (py + x) = 2p by reducing into Clairaut's form, taking the substitutions $X = x^2$, $Y = y^2$. (07 Marks)

5 a. If
$$z = e^{ax+by}$$
 f(ax - by), then show that $b \frac{\partial z}{\partial x} + a \frac{\partial z}{\partial y} = 2abz$. (06 Marks)

b. Solve
$$\frac{\partial^2 z}{\partial x^2} = xy$$
 subject to the conditions that $\frac{\partial z}{\partial x} = \log(1+y)$ when $x = 1$, and $z = 0$ when $y = 0$

c. Find the solution of one dimensional wave equation, using the method of separation of variables. (07 Marks)

a. Form the PDE by eliminating the arbitrary functions ϕ from $Ix + my + nz = \phi(x^2 + y^2 + z^2)$

Solve $\left[\frac{\partial^2 z}{\partial x \partial y}\right] = \sin x \sin y$ subject to the condition $\left[\frac{\partial z}{\partial y}\right] = -2\sin y$ when x = 0 and z = 0 if y

is a odd multiple of $\pi/2$.

(07 Marks)

Derive an one dimensional heat equation in the form $\frac{\partial u}{\partial t}$ (07 Marks)

Module-4

(06 Marks) Change the order of integration and hence evaluate

(07 Marks)

b. Evaluate $\int_{0}^{2} \int_{0}^{2} \int_{0}^{x} x + y + z \, dz \, dy \, dx$ c. Show that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ with usual notations. (07 Marks)

OR

Evaluate $\int e^{-(x^2+y^2)} dxdy$ by changing to polar coordinates. (06 Marks)

b. Find by double integration the area enclosed by the curve $r = a(1 + \cos\theta)$ between $\theta = 0$ and (07 Marks)

c. Show that $\Gamma\left(\frac{1}{2}\right)$ (07 Marks)

(06 Marks) Find the Laplace transform of f(t) = t(sint).

If $f(t) = t^2$, 0 < t < 2 and f(t + 2) = f(t) for t > 2, find $L\{f(t)\}$. (07 Marks)

(07 Marks) c. Find the inverse Laplace transform of

Find the Laplace transform of the unit step function f(t) =(06 Marks)

Employ Laplace transform to solve the equation $y'' + 5y' + 6y = 5e^{2x}$ (07 Marks)

c. Find the inverse Laplace transform of $\frac{s}{(s^2 + a^2)^2}$, using convolution theorem. (07 Marks)